The Universe Contents

The	History............... 64 In Popular Culture
Universe Contents	Mercury 68
	Orientation.......... 72
	Magnetosphere 73
	History............... 74 BeniColombo Mission 76
	In Popular Culture.... 77
	Caloris Planitia 79
Foreword	Pantheon Fossae 80
	Raditladi Basin. 81
Introduction to the	Rachmaninoff Crater . 82
Universe............... 8	Caloris Montes. 83
Scale of the Universe .	
Modern Observing Methods	Venus 84
Today's Telescopes 14	Orientation.......... 88
How to Use This Book 16	Atmosphere 90
Naming Conventions . 18	In Popular Culture.... 94
Highlights.......... 20	Mariner 2 95
	Magellan Mission. . . . 96
The Solar System...... 22	Signs of Life 98
Transits \& Eclipses. . . . 28	Baltis Vallis 101
	Maat Mons 102
	Alpha Regio 103
Introduction to the Planets.	Maxwell Montes . . . 104
	Aphrodite Terra 105
Manned Space Flight ... 48	
The Quest for Orbit. . . 48	
Race to the Moon 50	Orientation......... 110 Atmosphere
Shuttle Programme ... 51	Atmosphere12
The Present Day 52	Magnetosphere 1113
The International Space . Station.	History. 1114
	NASA Earth Science . 120
	Mt Everest. 124
The Sun 54	Challenger Deep 126
Orientation......... 58	Atacama Desert. . . . 128
Atmosphere 60	Mauna Kea 130
Heliosphere 61	Chicxulub Crater . . . 132
Solar Flares 62	Silfra 133
	Death Valley

Antarctica........... 136
Great Barrier Reef. . . 138 Amazon Rainforest . . 140
Ngorongoro Conservation Area.................. 142
Great Wall of China . . 144
The Moon. 146
Orientation 150
History. 152
In Popular Culture. . . 156
Apollo 11 158
Orbital Gateway..... 160
Lunar Eclipses 161
Sea of Tranquility. . . . 163
South Pole-Aitken
Crater 164
Copernicus Crater. . . 165
Montes Apenninus .. 166
Oceanus Procellarum. 167

Mars.................... . 168
Orientation 172
Mapping Mars 173
Martian Moons. 174
Atmosphere \& 177
History. 178
In Popular Culture. . . 182
Investigating Mars. . . 184
Curiosity Rover 188
InSight Lander 190
Travelling to Mars . . . 194
Polar Caps 196
Tharsis Montes 198
Olympus Mons. 200
Valles Marineris 201
Hellas Planitia 202
Bagnold Dune Field. . 203
Gale Crater.......... 204
Elysium Planitia..... 206
Syrtis Major Planum. 208

Utopia Planitia 209	Umbriel 286	Comets 338
Vastitas Borealis . . . 210	Oberon 287	Borrelly 340
	Titania............. 288	C/1861 G1 Thatcher . 341
Jupiter 212	Shepherd Moons . . . 289	Churyamov-
Orientation......... . 216		Gerasimenko 342
Atmosphere 217	Neptune.............. 290	Hale-Bopp.......... 343
History............. . 218	Orientation......... 294	Halley.............. 344
Great Red Spot 222	Magnetosphere 295	Hartley 2........... . 345
Ring System........ 224	History............. . 296	ISON. 346
Surface 222	In Popular Culture. . . 299	'Oumuamua 347
Clouds............. . 226	Surface/Atmosphere 301	Shoemaker-Levy 9 . . 348
Oceans 227	Rings 302	Swift-Tuttle 349
Magnetosphere 222	Proteus 303	Tempel $1 ~ 350$
Juno Mission 230	Triton.............. . 304	Tempel-Tuttle 351
lo 232	Nereid 306	Wild 2............. 352
Europa............. . 234	Other Moons 308	
Ganymede 236		Oort Cloud. 353
Callisto 238	Non-Planetary Solar System Objects 310	Exoplanets. 354
Saturn 242		2MASS J2126-814b. . 360
Orientation......... . 246	Asteroid Belt/Asteroids 312	51 Pegasi b 361
History............. 248	Bennu 314	55 Cancri 362
Cassini Mission 253	Ceres 316	Barnard's Star b . . . 364
Saturn's Rings 254	Chariklo............. 317	CoRoT-7b. 366
Magnetosphere 256	EH1................ 318	CVSO 30b and c . . . 368
Surface 257	Eros 320	Epsilon Eridani. 370
Titan. 258	Ida 321	Fomalhaut b 372
Enceladus.......... . 260	Itokawa 322	Gliese 163 b, c \& d. . . 373
Rhea, Dione \& Tethys 262	Phaethon 323	Gliese 176 b 374
lapetus 263	Psyche............. 324	Gliese 436 b........ 375
Mimas 264	Vesta 325	Gliese 504 b........ 376
Phoebe 265		Gliese 581 b, c \& e. . . 378
	Kuiper Belt 326	Gliese 625b 380
Uranus............... . 266		Gliese 667 cb \& cc . . 381
Orientation......... . 270	Dwarf Planets 328	Gliese 832 b \& c . . . 382
History. 272	Eris................ 330	Gliese 876 b, c, d \& e 383
Surface/Atmosphere 275	Farout 331	Gliese 3470 b. 384
Aurorae 276	The Goblin 332	GQ Lupi b 385
Magnetosphere 277	Haumea............ . 333	HAT-P-7b 387
Ring Systems 280	Makemake 334	HAT-P-11b 388
Miranda. 284	Pluto 336	HD 40307 g 390
riel 285	Farout	HD 69830 b, c \& d . . 391

HD 149026 b 391	1E 2259+586 454	Owl Nebula......... 495
HD 189733 b. 394	3C 273............ 455	Pleiades. 496
HD 209458 b 396	Achernar.......... 456	Polaris 497
HIP 68468 b \& c.... 398	Aldebaran 457	Procyon........... 498
Kapteyn b \& c 399	Algol. 458	RCW 86499
KELT-9b. 400	Alpha Centauri A . . . 459	Regulus........... 500
Kepler-10b \& c..... 402	Alpha Centauri B.... 460	Rigel. 501
Kepler-11b to g. 403	Altair 461	Ring Nebula 502
Kepler-16 (AB)-b . . . 404	Antares 462	Rosette Nebula 503
Kepler-22b 405	Arcturus 463	Sagittarius A*. 504
Kepler-62b to f. 406	Barnard's Star 464	SAO 206462....... 505
Kepler-70b \& c. 407	Betelgeuse 465	SDSSJ0927+2943... 506
Kepler-78b 408	California Nebula . . . 466	SGR 1806-20 507
Kepler-90b 409	Canopus 467	Sirius............. 508
Kepler-186b to f. . . . 410	Capella 468	Spica 509
Kepler-444b to f.... 412	Cat's Eye Nebula . . . 469	Tabby's Star 510
Kepler-1625b 413	Crab Nebula 470	T Tauri 511
Kepler-1647 (AB)-b. . 414	Cygnus X-1 471	ULAS J1120+0641... 512
Lich System (PSR	Deneb 472	UY Scuti 513
B1257+12)......... 416	Dumbbell Nebula. . . 473	Vega. 514
Methuselah's Planet. 418	Epsilon Aurigae 474	Veil Nebula 515
Pi Mensae b \& c 420	Eta Carinae......... 475	VY Canis Majoris 516
Pollux b 421	Ghost of Jupiter. . . . 476	W40.............. 517
Proxima b......... 422	GRS 1915+105 477	
PSO J318.5-22 424	HE 1256-2738 478	Galaxies............. 518
Ross 128 b 425	HE 2359-2844 479	Andromeda Galaxy .. 522
TRAPPIST-1........ 426	Helix Nebula 480	Black Eye Galaxy . . . 525
TreS-2b 428	Herschel's Garnet Star481	Bode's Galaxy 526
WASP-12b 430	HLX-1............. 482	Canis Major Dwarf. . . 528
WASP-121 b. 432	Horsehead Nebula .. 483	Cartwheel Galaxy ... 529
Wolf 1061 b, c \& d . . 434	HV $2112 \ldots484$	Centaurus A 530
YZ Ceti b, c \& d 437	IGR J17091-3624 . . . 485	Cigar Galaxy 531
	Iris Nebula 486	Circinus Galaxy 532
Stellar Objects 440	Kepler's Supernova.. 487	Condor Galaxy 533
Nebula \& Protostars. 442	Kes $75 . \ldots \ldots \ldots \ldots . . .488$	Grand Spiral Galaxy . 534
Main Sequence Stars 443	Little Dumbbell	Hoag's Object. 535
Giant Stars 444	Nebula............ 489	Large and Small
Binaries \& Clusters . . 445	Mira 490	Magellanic Clouds . . 536
End of Life......... 446	MY Camelopardalis . 491	Malin 1 Galaxy 539
Life Cycle of Stars. . . 450	North America Nebula492	Markarian 231 540
Spectra Classification 453	Omega Centauri 493	M77 541
	Orion Nebula 494	M87 542

NGC 1512 544	Antennae Galaxies .. 559	Norma Cluster...... 578
NGC 3370 545	Arp $273 ~ . ~ 561 ~$	Pandora's Cluster . . . 579
Pinwheel Galaxy 546	Mayall's Object 562	Perseus Cluster 581
Sagittarius Dwarf Elliptical	NGC 2207 \& IC 2163.563	Phoenix Cluster 583
Galaxy 548	NGC 2623......... 565	Virgo Cluster 584
Sculptor Galaxy 549	NGC 3256.......... 566	
Sombrero Galaxy . . . 550		Glossary 590
Sunflower Galaxy ... 551	Galaxy Clusters 567	
Tadpole Galaxy. 552	Abell 1689........ 568	Index. 596
Triangulum Galaxy .. 553	Bullet Cluster...... 569	
W2246-0526 554	El Gordo 571	Acknowledgements.... 605
Whirlpool Galaxy . . . 556	Fornax Cluster 572	
	Local Group 574	Author Biographies ... 607
Colliding Galaxies 558	Musket Ball Cluster. . 576	

A star being distorted by its close passage to a supermassive black hole at the centre of a galaxy.

Welcome to the Universe

Lonely Planet's The Universe gives us more perspective, often breathtaking more insight, often deep - and more unusual facts, often ones you can't find anywhere else, regarding the profound happenstance of our existence. Simply put, the remarkable sequence of cosmic accidents required to enable us to be here on this planet and publish books like this one is astonishing. Unique to these pages are wonderful comparisons of Earth with the other worlds of our solar system and even those exoplanets orbiting other stars. They drive home the jaw-dropping idea that you and I, and everything we can observe around us, are made of the dust and gas blasted spaceward by exploding ancient Suns. And from the stardust and drifting gas, the extraordinary diversity of living things, including animals like you and me, emerged. You and I are at least one way that the cosmos knows itself. An utterly amazing idea that fills me with reverence every time I think on it.

While you are going about your business every day, thinking about what's happening on Earth right now, this book will help you think about a much grander timeline as well. From the comfortable surface of Earth, our deep-thinking ancestors observed our planet and its relationship, their relationship, to the night sky and the Sun. They learned where to live and how to survive. From the icy blackness of space, our spacecraft, built by our best scientists and engineers, make further observations that relentlessly show us Earth is like no other place in the solar system, and remains the only place we can live and thrive. By understanding the changes here over recent

millennia, we can see that, if we're going to continue to thrive, we must preserve our environment. Otherwise, we'll go extinct, like 90% of the species that gave it a go on Earth before we showed up.
This cosmic perspective induces all of us to compare Earth to our neighbouring worlds out there. It's one thing to consider Earth as a pretty big place, especially if you tried to walk around it. It's another thing to think that 1300 Earths would fit inside a sphere the size of Jupiter, and over a million Earths would fit inside the volume of the Sun. While we're appreciat ing the visible differences of the traditional planets, what you might call their qualitative differences, this book helps us take it all in by the numbers, the planets' (and exoplanets') quantitative differences, and beyond that, the differences between our own Sun and the uncountable stars above, visible and invisible. In here, these essential distinctions are spelled out - or counted up.

The rocky and metallic compositions of Mars, Venus, and Mercury are very much
like Earth's, but the environments of these other worlds are completely different. The text and pictures here will help you understand why. The unique chemical composition of the rocks, craters, and sands of the other worlds in the solar system has caused these extraterrestrial environments to have chemistries that are literally other worldly. These processes have conspired to produce radically different surface temperatures on Mars and Venus. Our discoveries in planetary science offer us a planet-sized lesson in the importance of the greenhouse effect, how our planet became habitable, and how the biochemistry of life changed the chemistry of the atmosphere and sea.

The story carries out away from the Sun, where we find the gas-giant planets: Jupiter and Saturn. They don't seem to even have surfaces as such. There's nowhere to stand, but they're so massive that, if you got too close, their gravity would crush you quick. On out further from the Sun we find Uranus and Neptune. They're very large and very cold, with enormous icy storm systems and
winds moving at fantastic speeds. All of these other worlds in our solar system, the ones that are not Earth are very different, very interesting - and utterly hostile.

As you turn these pages, learning the facts of everything from our solar system to the far reaches of intergalactic space, consider that there's no other planet that we know of anywhere, upon which you could even catch a breath to be taken away, or seek a deciliter of water to be sipped - let alone be afforded an opportunity to live long and prosper. The Earth is unique, amazing, and our home.

From a cosmic perspective, we are a pretty big deal. We've changed the climate of a whole planet. Run the numbers for yourself. Climate change is our doing. If we're going to make it much farther on this world, we're going to have to engage in some un-doing. Right now, it's our chance to change things. We are but a speck in the cosmic scheme. But it's our speck, and the more we know and appreciate it, the better chance we have keeping it hospitable for species like us.

Introduction to the Universe

 our Universe is filled with wild examples of exoplanets, stars, black holes, nebulae, galaxy clusters and more, which scientists are still probing.Our Universe began in a tremendous explosion known as the Big Bang about 13.7 billion years ago We know this by observing light in our Universe which has travelled a great distance through space and time to reach us today Observations by NASA's Wilkinson Anisotropy Microwave Probe (WMAP) revealed microwave light from this very early epoch, about 400,000 years after the Big Bang.

A period of darkness
hundred million years later, when the first objects flooded the Universe with light. The first stars were much bigger and brighter than any nearby today, with masses about 1000 times that of our Sun. These stars first grouped together into minigalaxies; the Hubble Space Telescope has captured stunning pictures of earlier galaxies, as far back in time as ten billion light years away.

By about a few billion years after the Big Bang,
the mini-galaxies had merged to form mature galaxies, including spiral galaxies like our own Milky Way. It had also expanded, racing under he force of the so-called Hubble constant. Now, 13.7 billion years from the Big Bang, our planet orbits a middle-aged Sun in one arm of a mature galaxy with a supermassive black hole in the middle. Our own solar system orbits the Milky Way's centre, while our galaxy itself speeds through space.

Under the Milky Way in San Pedro de Atacama, Chile.

Scale of the Universe

Throughout history, humans have used a variety of techniques and methods to help them answer the questions ‘How far?' and 'How big?'. Generations of explorers have looked deeper and deeper into the vast expanse of the Universe. And the journey continues today, as new methods are used, and new discoveries are made.

In the third century BC, Aristarchus of Samos asked the question 'How far away is the moon?' He was able to measure the distance by looking at the shadow of the Earth on the moon during a lunar eclipse.

It was Edmund Halley, famous for predicting the return of the comet that bears his name (p. 344), who three centuries ago found a way to measure the distance to the Sun and to the planet Venus. He knew that the planet Venus would very rarely, every 121 years, pass directly between the Earth and the Sun. The apparent position of the planet, relative to the disc of the Sun behind it, is shifted depending on where you are on Earth And how different that shift is depends on the distance from both Venus
and the Sun to the Earth This rare event, the transit of Venus, occurred again most recently on June 8, 2004. It was knowing this fundamental distance from the Earth to the Sun that helped us find the true scale of the entire solar system for the first time. When we leave the solar system, we find our star and its planets are just one small part of the Milky Way Galaxy. The Milky Way is a huge city of stars, so big that even at the speed of light, it would take 100,000 years to travel across it. All the stars in the night sky,

This Hubble Space Telescope image captures the effect of gravitational lensing by dark matter in a galaxy clust
including our Sun, are just some of the residents of this galaxy, along with millions of other stars too faint to be seen.

The further away a star is, the fainter it looks. Astronomers use this as a clue to figure out the distance to stars that are very far away. But how do you know if the star really is far away, or just not very bright to begin with? This problem was solved in 1908 when Henrietta Leavitt discovered a way to tell the 'wattage' of certain stars that changed their pulse rate linked to their wattage. This allowed their distances to be measured all the way across the Milky Way.

Beyond our own galaxy lies a vast expanse of galaxies. The deeper we see into space, the more
galaxies we discover. There are billions of galaxies, the most distant of which are so far away that the light arriving from them on Earth today set out from the galaxies billions of years ago. So we see them not as they are today, but as they looked long before there was any life on Earth.
Finding the distance to these very distant galaxies is challenging, but astronomers can do so by watching for incredibly bright exploding stars called supernovae. Some types of exploding stars have a known brightness wattage - so we can figure out how far they are by measuring how bright they appear to us, and therefore the distance to their home galaxy. These are called 'standard candles'.

So how big is the Universe? No one knows if the Universe is infinitely large, or even if ours is the only Universe that exists. And other parts of the Universe, very far away, might be quite different from the Universe closer to home. At the time of publication using our most advanced technology and given the current size of the ever-expanding Universe, scientists estimate it is roughly 46 billion light years, or 440 sextillion km (274 sextillion mi). If it's hard to wrap your head around that number, welcome to the club. The Universe is almost inconceivably big, and we have only observed a small portion of it (astronomers estimate we have observed roughly 4\% of the known Universe).

Modern Observational Methods

In 1609 an Italian physicist and astronomer named Galileo became the first person to point a telescope skyward. Although that telescope was small and the images fuzzy, Galileo was able to make out mountains and craters on the moon, as well as a ribbon of diffuse light arching across the sky - which would later be identified as our Milky Way Galaxy. After Galileo's and, later, Sir Isaac Newton's time, astronomy flourished as a result of larger and more complex telescopes. With advancing technology, astronomers discovered many faint stars and the cal-

Hubble Space Telescope in orbit.
culation of stellar distances. In the 19th century, using a new instrument called a spectroscope, astronomers gathered information about the chemical composition and motions of celestial objects.

Twentieth century astronomers developed bigger and bigger telescopes and, later, specialised instruments that could peer into the distant reaches of space and time. Eventually, enlarging telescopes no longer improved our view, because the atmosphere which helps sustain life on Earth causes substantial distortion and reduction in our ability to view distant celestial objects with clarity

That's why astronomers around the world dreamed of having an observatory in space - a concept first proposed by astronomer Lyman Spitzer in the 1940s. From a position above Earth's atmosphere, a telescope would be able to detect light from stars, galaxies, and other objects in space before that light
is absorbed or distorted. Therefore, the view would be a lot sharper than that from even the largest telescope on the ground.

In the 1970s the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA) began working together to design and build what would become the Hubble Space Telescope. On 25 April 1990, five astronauts aboard the space shuttle Discovery deployed the eagerly anticipated telescope in an orbit roughly 600 km (380 mi) above the Earth's surface. That deployment and, later, the unprecedented images that Hubble delivered represented the fulfillment of a 50-year dream and more than two decades of dedicated collaboration between scientists, engineers, contractors, and institutions from all over the world.

Since Hubble was launched, a number of other space telescopes have been successfully deployed to advance our knowledge of the Universe. These include the Spitzer Space Telescope, named for the man whose idea sparked a new era in telescopes and observation.

Today's Telescopes

Around the world, astronomers, space scientists and astrophysicists plying the depths of the Universe work in a variety of scientific fields, combining physics, chemistry, biology and other sciences to advance human knowledge of space. Much of their work relies on data from telescopes devoted to the observation of celestial objects. These can be either ground-based (located here on our planet) or space-based, rotating in orbit around Earth.

Ground-based telescopes are typically located in places around the world that meet a certain set of observing conditions. Broadly speaking, this includes locations with good air quality, low light

For non-professional astronomers, the Zeiss Telescope at Grifith Observatory, CA, offers a glimpse at the heavens.

Lowell Observatory in Arizona

14 | INTRODUCTION TO THE UNIVERSE

How to Use This Book

Like its namesake the book you hold is big - and like our understanding of the Universe, it is also, by necessity, incomplete. Astronomers continue to explore the Universe with ever-improving technology unlocking previously unknown secrets and mysteries. In these pages, you'll discover some you likely don't already know, and undoubtedly have questions and hypotheses about what we'll discover next.

As you work through this text, the general organisation of the book will lead you from home on our Earth out into the far reaches of the solar system, then into our neighbouring stars and planetary systems and finally into the rest of our galaxy and the Universe as a whole, via carefully selected examples of known exoplanets, stars, nebulae and galaxies, as well as

This artist's illustration gives an impression of how common planets are around the stars in the Milky Way.
even more exotic deep-sky objects. You'll discover as much as we know about our celestial neighbourhood, and our place in it. In addition to planets and moons, get to know our Sun, explore the asteroid belt and the Kuiper Belt, and learn what lays beyond, in interstellar space.

Outside our solar system, the book guides you to some of the notable neighbouring stars, stellar systems, and exoplanets we've discovered. You'll understand how we search for planets where life might exist and the stars they orbit. Some of these are located within the Milky Way; others we've observed from our particular perspective in the Universe though they live far beyond the boundaries of what we consider our galaxy.

Finally, the book steps out to the edge of the observable Universe - at least what we've observed with the technology available today. You'll get to know the structure of the Milky Way as well as an orientation to neighbouring galaxies like the Andromeda Galaxy which is visible from Earth. You'll explore other galactic formations and zoom even further out to learn about galactic clusters and superclusters. By the end of the book, you'll have a sense for the structure of the entire Universe as well as some of the big questions we still have as we ponder our place in it. You may not be able to plan your next vacation on the basis of the planetary moons, exoplanets and stunning nebulae featured, but you'll find lots to amaze and awe.

Earth as seen from space

Earth at a Glance

Despite the number of planets, not to mention universes, which astrophysicists and astronomers now believe might exist, one fact remains: Earth is the only planet we know of that sustains life.

The word 'Earth' is at least 1000 years old, an amalgam of the Saxon 'ertha', the Dutch 'aerde' and the German 'erda' - all of which mean 'ground'. (Earth is the only planet not named after a Greek or Roman deity.) The third-closest planet to the Sun, our home is the fifth-largest planet in the solar system. If the Sun were the size of the average household door, the Earth would be the size of a nickel. The Earth orbits the Sun, which
is in fact a star, at a distance of 150 million km (93 million mi) and one orbit takes 365 days. Earth is the only world in our solar system featuring liquid water on its surface But, along with its fellow terrestrial planets, Earth is composed of a molten core, a rocky mantle and a solid crust. With one moon and no rings, the Earth is protected from incoming meteoroids by its atmosphere, which breaks up incoming debris.

The first Earthling to see its home from orbit was a terrier named Laika, who circled the planet in 1957 aboard Sputnik 2. Although she did not survive the trip, two subsequent Soviet space dogs - Belka and Strelka - became, in 1960, the first living creatures to return from orbit alive, paving the way for human explorers. Popular culture has generated countless alternative views of Earth, with the planet and its population governed by everything from apes to a stone monolith. But how much longer travellers, canine or otherwise, will be able to thrive on Earth is
the subject of heated debate. Quite literally The fate of Earth is inextricably linked to that of the Sun. Models predict that, in around 5 billion years, the Sun will become a red giant. It will increase to 100 times its present size, reaching a luminosity 2000 times its current level. At that point it will vaporise the Earth, whose water will have already evaporated. But that leaves plenty of time to take in Earth's natural wonders: oceans, mountains, deserts and jungles - all teeming, exclusively in the entire known Universe, with an extravagant abundance of life.

Top Tip

Visitors to Earth should plan their itinerary while there's still time. Venice is sinking, Machu Picchu is collapsing and the lush Congo Basin could be two-thirds gone by 2040, while experts say at least 27 species go extinct each day. Sobering facts, only partly offset by the regular new discoveries being made of countless new species in the Amazon and deep ocean.

Getting There \& Away

With commercial space travel imminent, be sure you know what you're signing up for. The Earth's moon can be reached in about three days, while suborbital flights can pass in under an hour. But travelling to the former ninth planet from the Sun, Pluto, took New Horizons, launched in 2006 and the fastest probe ever to leave Earth, nine and a half years. For now, leaving our home planet is only for a rare few.

Earth's Seasons

Earth's axis determines how the seasons change throughout the year.

Orientation

If there is anybody else out there, what would they see looking at Earth? A planet whose radius of 6371 km (3959 mi) makes it the biggest of the terrestrial planets and the fifth-largest planet overall. With an average distance of 150 million km (93 million mi), Earth is exactly one astronomical unit away from the Sun because one astronomical unit (abbreviated as AU), is the distance from the Sun to Earth. This unit provides an easy way to quickly compare other planets' relative distances from the Sun. It takes about eight minutes for light from the Sun to reach Earth.

As Earth orbits the Sun it rotates once every 23.9 hours. It takes 365.25 days to complete one trip around the Sun. That extra quarter of a day presents a challenge to our calendar system, which counts one
year as 365 days. To keep yearly calendars consistent with Earth's orbit around the Sun, every four years sees the addition of one extra day, a leap day, more commonly expressed by the year in which it is added - a leap year.

In fact, the length of Earth's day is increasing. When Earth was formed, 4.6 billion years ago, its day would have been roughly six hours long. Around 620 million years ago, this had increased to 21.9 hours. Today, the average day is 24 hours long, but its length is increasing by about 1.7 milliseconds every century. This is caused by the moon, whose gravity slows Earth's rotation through the tides it helps create. Earth's spin causes the position of its tidal ocean bulges to be pulled slightly ahead of the Moon-Earth axis, which creates a twisting force that in turn decreases the speed of Earth's rotation.

Earth vs the Planets
-- Radius --
11x
SMALLER
than Jupiter

-- Mass --

$\xrightarrow{\Delta \circ}$
17x
than Neptune

-- Volume --
1321x
LESS
than Jupiter

-- Surface gravity LESS
than Jupiter

	- Mean temperature --
	$-466^{\circ} \mathrm{C}$
	$\left(-808^{\circ} \mathrm{F}\right)$
	COLDER
than Venus	
(000e)	-- Surface area --
(7.	6.8 x
	MORE
than Mercury	

-- Surface pressure --
92x
LESS
than Venus

-- Density --
8 x
DENSER
than Saturn
--Length of Day --
1.41x

LONGER
than Uranus

-- Orbit Period --
53\%
SHORTER
than Mars
means that throughout the

Earth's axis is an imaginary pole going right through the planet's centre from top to bottom. Earth spins around this pole, making one complete turn each day. That is why we have day and night, and why every part of Earth's surface gets some of each. When Earth was young, it is thought that something big hit Earth and knocked it off-kilter. So instead of rotating with its axis straight up and down, it leans over a bit. As Earth orbits the sun, its tilted axis always points in the same direction. This get the sun's direct rays. This tilt causes the yearly cycle of the seasons.

Roughly speaking, the northern hemisphere is tilted towards the Sun between the months of April and September, while the southern hemisphere is tilted away. With the Sun higher in the sky, direct solar heating is greater in the north, creating summer conditions. Conversely,

Fun Fact: Guest from Above

In November 2018, NASA glaciologists discovered a prime example of just what can happen when the atmosphere is off its game: a large impact crater hiding beneath more than a half-mile of ice in northwest Greenland. The crater, under the Hiawatha Glacier, was created by a meteorite estimated to have struck at least 12,000 years ago. The crater is 300 m (1000 ft) deep and 13 km (19 mi) in diameter. NASA's Operation Icebridge discovered the crater's existence using radar data gathered on polar flights.

Hiawatha Glacier in Greenland, seen by NASA

Index

A
asterisms, see also constellations, galaxies, star clusters
Big Dipper 546
Northern Cross 472
Spring Triangle 509
Winter Hexagon 468, 498,501 Winter Triangle 498
Asteroid Belt 311, 312-313
Asteroid Beit 311, 312-313
asteroids, see also comets, meteor showers
16 Psyche 324
2010 TK7 313
Chariklo 311
Ehariklo 311, 3177
Eros 320
Idas 321
Itokawa 322
Phaethon 323,327
Vesta 312,316, 325
astronauts
Aldrin, Buzz 24, 50, 154, 156 158-159, 163
Anders, Bill 50
Armstrong, Neil 24,31,50, 145, $149,154,156,158-159$, 163
Auñón-Chancellor, Serena 53
Borman, Frank 50
Chaffee, Roger 50
Chang-Diaz, Franklin 51
Chiao, Leroy 145
Collins, Michael 50,156 , 158-159
Gagarin, Yuri 31, 49, 154 Glenn, John 50,51 Grissom, Gus 50 Leonov, Alexei 50 Liwei, Yang 145 Lovell, Jim 50 McClain, Anne 53 Musgrave, Story 51 Pogue, William 145 Savitskaya, Svetlana 50 Shepard, Alan 49 Swigert, Jack 157 White, Ed 50
Whitson, Peggy 53

astronomers \& astral scholars

Abd al-rahman al-Sufi 522
Al-Biruni, Abu Rayhan 119
Anaxagoras 65
Aristotle 37,119
Armstrong, Dr David 387
Armstrong, Jerry 557
Aryabhata $37,119,184$
Barnard, Edward Emerson 365-366, 466

Bioraker. Gordon L 229
Bode, Johann Elert 272,526, 531
Cassini, Giovanni 43,262-263 Cassini, Jean-Dominique 249 ochran, William D 374 Colombo, Giuseppe (Bepi) 76 Copernicus, Nicolaus 65, 165 Crabtree, William 93
Curtis, Heber 524, 543
de Pellepoix, Antoine Darquier 502
Disney, Mike 539
Doyle, Laurence 415
Dunlop, James 530, 544
Eddie, Lindsay 207
Edgeworth, Kenneth 326
Endl, Michael 374
arrell, Sean 482
Flammarion, Camille 208
Fleming, Williamina 483
Gale, Walter Frederick 195
Galilei, Galileo 31, 33, 40, 42,
$65,75,93,148,152,216$,
219, 232, 237, 240-241,
249, 250, 297, 298, 496
Galle, Johann Gottfried 46, 298, 304
Gassendi, Pierre 75
Gilmore, Gerry 548
Goddard, Robert H 156
Goodricke, John 458
Hall, Asaph 38,174,180
Halley, Edmond 137,344
Harding, Karl Ludwig 480
Harriott, Thomas 32, 65, 75
Hartley, Malcolm 345
Hawking, Stephen 47
Herschel, Caroline 281, 549
Herschel, John 261, 533
Herschel, William 44, 261, 268
272, 273, 281, 283, 287,

$$
492,515,534,545
$$

Hoag, Art 535
Hodierna, Giovanni Battista 553
Horrocks, Jeremiah 93
lubble, Edwin 524,574
173, Cistiaan 39, 42
250, 258
Ibata, Rodrigo 548
Irwin, Mike 548
Jenniskens, Peter 318
Kepler, Johannes 487
Kuiper, Gerard P 283-284,
306, 326
Lassell, William 283, 285, 286,
304, 305
Leavitt, Henrietta 484, 537
Le Verrier, Urbain Joseph 46, 298
Levy, David 348
Liu, Michael 424
Malin, David 539

Marius, Simon 241
Mascareño, Alejandro Suarez 380
Mayall, Nicholas 562
Méchain, Pierre 495,541,546, 550-551
Meléndez, Jorge 398
Messier, Charles 470, 473,489, 495, 502, 542-543, 585, 586
Montanari, Geminiano 458
Nevski, Vitali 346
Novichonok, Artyom 346
Oberth, Hermann 53, 156
Oort, Jan 353
Orosz, Jerome 415
Parker, Eugene 61
Pickering, Edward Charles 458
Pickering, William 265
Pigott, Edward 525
Poppenhaeger, Katja 395
Ptolemy, Claudius 42, 65, 493
Puckett, Tim 557
Ross, Jerry 51
Sagan, Carl 498
Scheiner, Christoph 65
Schiaparelli, Giovanni 39, 173, 179, 202, 208, 349
Shoemaker, Carolyn and Eugene 348
Showalter, Mark 309
Slipher, Vesto 523
Strabo 119
Taylor, Patrick 323
Thorne, Kip 471, 484
von Braun, Wernher 53 Wild, Paul 352
Wolf, Max 435
Wolszczan, Alexander 416
Zwicky, Fritz 529
Żytkow, Anna 484

atmosphere

Earth $28,36,108,112,113,116$
HAT-P-11b 389
HD 209458 b 396
Jupiter 40, 214-217, 225
Mars 38, 170-171, 177
Mercury 32,71-72,73
Moon (Earth) 151
Neptune 25, 46, 293, 296, 300-301
Saturn 42,244-245,246-247 Sun, 60
Titan, Saturn 258-259
Triton, Neptune 305
Uranus 24, 44, 268-269,

$$
274-275
$$

Venus $24,34,87,89,90,98,99$
aurorae $25,112,228,236-237$, $252,273,274,276,277$
black holes 447-449
Cygnus X-1 449, 471
GRS 1915+105 47
HLX-1 441, 482
IGR J17091-3624
48
IGR J17091-3624 485
Sagittarius A* 58, 482, 504
Sagittarius A* 58, 482,504
ULAS J1120+0641 512

C

canyons \& channels, see also craters
Baltis Vallis, Venus 35, 100-101 Chasma Boreale, Mars 197
Death Valley, Earth 122,

$$
134-135
$$

Grand Canyon Earth 127
Mariana Trench, Earth 37,

$$
126-127
$$

Valles Marineris, Mars 24, 26, 195, 201
Verona Rupes, Miranda, Uranus 26
comets -353, see also asteroids, meteor showers
9P/Tempel 1345
Borrelly 339,340
C/1490 Y1 317
C/1861 G1 Thatcher 341
Chariklo 311, 317
Churyumov-Gerasimenko 342
Hale-Bopp 311, 343
Halley's Comet 339, 344
Hartley 2345
SON 311, 346, 353
Shoemaker-Levy 9 219, 311,
348
Siding Spring 187, 353
Swift-Tuttle 349
Tempel 1 339, 350
Tempel-Tuttle 351
Wild 2 339, 352

constellations, see also

asterisms, galaxies, star cluster
Andromeda 522-524,561
Aquarius 383, 426-427,480, 554-555
Aquila 461, 477, 488
Auriga 430-431, 468, 474
Australe 578
Black Eye 525
Boötes 463
Camelopardalis 491
Cancer 362-363, 384,565,
576-577
Canes Venatici 551, 556-557
Canis Major 498,508, 516, 528, 563
Carina 467, 475, 569
Cassiopeia 454
Centaurus 398, 422-423,459,
460, 493, 499, 530

Cepheus 481, 486
Cetus 437,490, 541
Circinus 499, 532
Coma Berenices 525,539
Corvus 559
Cygnus 387,388-389, 400-401, 403, 404,
405, 407, 408, 410-411
413, 414-415, 471, 472,
492, 510, 515
Dorado 373, 536-538
Draco 380, 402, 409, 428-429, 469, 552
Eridanus 370-371, 456, 534
Fornax 572-573
Gemini 421
Grus 382
Hercules 392-393
Horologium 544
Hydra 476, 478
Hydrus 536-538
Leo 375,500,506,512,545
Libra 378
Lupus 385, 505
Lyra 406, 412, 502, 514
Mensa 420, 536-538
Monoceros 366-367,503
Norma 578
Octans 360
Ophiuchus 364-365, 434-435,

$$
464,487
$$

Orion 369, 465, 483, 494, 501
Pavo 533
Pegasus 361, 396-397
Perseus 458, 466, 489

$$
581-582
$$

Phoenix 482, 571,583
Pictor 390, 399
Piscis Austrinus 372
Puppis 391, 432-433
Sagittarius 279, 504, 507, 548
Scorpius 381, 418-419, 462, 485
Sculptor 479, 529, 549,
579-580
Scutum 513
Serpens 517, 535
Taurus 374, 457, 470, 496, 511
Triangulum 553, 578
Tucana 484,536-538
Ursa Major 495, 526-527,531, $540,546-547,562$
Ursa Minor 497
Vela 566
Virgo 376, 416-417, 425, 455, 509, 542-543,550, 568,584-586
Vulpecula 394-395, 473
craters (impact \& volcanic), see also canyons \& channels
Alphonsus Crater, Moon (Earth) 154
Apollodorus, Mercury 80
Argyre Planitia, Mars 197
Aristarchus, Moon (Earth) 167

Caloris Basin, Mercury 26 , 74, 83
Caloris Planitia, Mercury 78-79, 80, 81
Chicxulub Crater, Earth 122 132
Copernicus Crater, Moon (Earth) 162,165
ddie Crater, Mars 207 Gale Crater \& Bagnold Dune Field, Mars 188-189, 195, 203-205
Hellas Planitia, Mars 195, 197, 202
Herschel Crater, Mimas, Saturn 43, 264
Hiawatha Glacier, Earth 111 Ngorongoro Conservation Area, Earth 123, 142-143 Pantheon Fossae, Mercury 33, 78, 80
Rachmaninoff Crater, Mercury 74,78, 82
Raditladi Basin, Mercury 78, 81 Sacajawea Patera, Venus 86 South Pole-Aitken Crater, Moon (Earth) $155,162,164$ Stickney Crater, Phobos, Mars 174
Tycho Crater, Moon (Earth) 153 Utopia Planitia, Mars 27,195, 209

D

dwarf planets 326-327 Ceres 27,311, 316, 326 Eris 311, 328, 330, 336
Haumea 311, 329, 333
Makemake 329, 333, 334-335 Pluto 109, 294, 311, 328-329, 330, 336-337

E

Earth 24, 26, 27, 28-29, 36-37,
56,60, 61, 62, 65,
98-99, 106-145
148-167, see also atmosphere, canyons \& channels, craters, magnetosphere, volcanoes \& mountains
Amazon rainforest 123,

$$
140-141
$$

Antarctica 123,136-137
Atacama Desert 122,128-129 Great Barrier Reef 37,123, 138-139
Great Wall of China 123, 144-145
Silfra Fissure 122, 133

Black Eye 521
Bode's 521, 526-527
Bode's 521, 526-527
Canis Major Dwarf 521, 528, 537,575
Cartwheel 529
Centaurus A 530
Cigar 521, 526-527, 531
Circinus 532
Condor 521,533
ESO 243-49, 482
Grand Spiral 534
Hoag's Object 521,535
IC 1613574
IC 2163 563-564
Large Magellanic Cloud 467, $521,536-538,574-575$ Leo I 574
Malin 1539
Markarian 231540 Mayall's Object (Arp 148) 562
Messier 32 574, 575
Messier 49 584-585
Messier 77541
Messier 84585
Messier 86 584-85
Messier 87 521, 542-543,
Messier 110 281,5
NGC 147574
NGC 185574
NGC 205574
NGC 1275 581-582
NGC 1316573
NGC 1365573
NGC 1387573
NGC 1399 572-573
NGC 1512544
NGC 2207 563-564
NGC 2623565
NGC 3077527
NGC 3256566
NGC 3370545
NGC 4038 559-560
NGC 4039 559-560
NGC 4388585
NGC 5195556
Pinwheel 521,546-547
Sagittarius Dwarf Elliptical 537, 548, 575
Sagittarius Dwarf Irregular 575 Sculptor 549
Small Magellanic Cloud 467 484,536-538, 541,575
Sombrero 550, 586
Sunflower 551
Tadpole 552

Triangulum 553,574,575
UGC 1810561
UGC 1813 561 W2246-0526 554-555
W2246-0526 554-55
galaxy clusters 567-587
Abell 1689568
Bullet Cluster 569
Coma 567
Dorado Group 573
El Gordo 571
Fornax Cluster 572-573
Hydra-Centaurus 566
Local Group 521, 553, 574-575, 578
Markarian's Chain 585
Messier 66 Group 575
Messier 81 Group 575
Messier 101 Group 547, 575
Musket Ball Cluster 576-577
Norma Cluster 578
Pandora's Cluster 579-580
Perseus Cluster 581-582
Phoenix Cluster 583
Virgo A 585
Virgo B 585
Virgo Cluster 521,574, 584-586
Virgo Supercluster 575,584
gas giants $25,40-41,42-43$
2MASS J2126-8140 360
55 Cancri b 362-363
55 Cancri d (Lippershey) 363
CVSO 30b 369
CVSO 30c 369
Epsilon Eridani b 371
Fomalhaut b 372
Gliese 504 b 376
Gliese 832 b 382
Gliese 876 b 383
Gliese 876 c 383
GQ Lupi b 385
Jupiter 214-241
Kepler-16 (AB)-b 404
Kepler-1625b 413
Kepler-1647 (AB)-b 414-415
Methuselah 418-419
Pollux b (Thestias) 421
PSO J318.5-22 424
Saturn 244-265

Great Attractor 578

greenhouse effect \& climate

change $24,34,37,86$,
139, 382

H

heliosphere 61
Holst, Gustav 43, 45, 77
Holst, Gustav
51 Pegasi b 361
Aldebaran b 45
HAT-P-7b 387
HD 149026 b 392-393

HD 189733 b 394-395
HD 209458 b 396-397
KELT-9b 400-401
TrES-2b 428-429
WASP-121 b 432-433

hot Neptunes

Gliese 436 b 375, 384
Gliese 3470 b 384
Gliese 4370 b 384
HAT-P-11b $388-389$
I
ice giants $26,44-45,46-47$
55 Cancri c (Brahe) 363
55 Cancri f (Harriot) 363
CoRoT-7c 367
Neptune 292-309
Uranus 268-289
Union 81, 176, 205, 319
$328,334,337,361,362$,

365, 421

interstellar objects
2014 FE72 331
Biden (2012 VP113) 332
Farout (2018 VG18) 331
Goblin, The (2015 TG387) 332
Goblin, The (2015 TG387) 332
'Oumuamua 311, 347

Sedna 332

J

Jupiter 24, 25, 26, 27, 40-41, 152,
212-241, 313, 345, 348,
350 see also atmos-
phere, magnetosphere,
ring systems
Great Red Spot 24, 27, 40, 47,
215, 219, 221-223, 229
ittle Red Spot 223

K

Kuiper Belt 304, 306, 309, 311
326-327,339, 342
L
Late Heavy Bombardment
(LHB) theory 153
ife, conditions that could
$38,41,43,47,56,60$
92 98-99, 108-145
92,98-99,108-145
109, 129, 181,189, 205,
215, 238, 253, 259, 261,
114-415, 426-427,
434-435, 460
liquid oceans \& presence of
water, see also water-
ce $25,26,27,98-99$
$15,117,122,126-127$,
31, 133, 136-137,
138-139, 143,187,205

210, 229, 234-235, 238
258-259, 286
lunar eclipse 28-29, 118, 161

M

magnetosphere
Earth 113
Jupiter 221, 227, 228-229, 326
Mars 177
Mercury 73, 76
Moon (Earth) 151
Neptune 295
Saturn 252, 256
Uranus 276-277
Mars 24, 26, 27, 38-39, 52, 129
152, 168-211, 313,
see also atmosphere,
canyons \& channels,
craters, magneto-
sphere, volcanoes \& mountains
dark spots 39, 173, 195, 208
Olympia Undae 197
Polar Ice Caps 195, 196-197
Vastitas Borealis 195, 210-211
Mercury 24, 26, 29,32-33,
65, 68-83 see also
atmosphere, craters,
magnetosphere, volca-

noes \& mountains

meteor showers \& meteorites, see also asteroids,
ALH84001 186
Eta Aquarids 344
Geminids 323
Leonids 351
Lyrids 341
Orionids 344
Perseids 349
Quadrantids 318-319, 323
Messier Catalogue 19
Monoceros Ring 521,528
Moon (Earth) 24, 28-29,31 $37,39,50,52,83,110$, 146-167, 194, see also atmosphere, craters,
magnetosphere, volcanoes \& mountains
Imbrium Sculpture 83
Oceanus Procellarum 162, 167
Sea of Tranquility 162-163

moons

Hi'iaka 333
Namaka 333
Ida asteroid
Dactyl 321
Jupiter
Adrastea 224,240
Amalthea 224, 240
Callisto 27, 41, 148, 221
238-239
Europa $25,26,27,41,215,219$,
251, 232 234-235

Ganymede 26, 41, 43, 148, 221
lo $25,26,41,148,219,221$, 232-233,304
Metis 224,240
Thebe 224, 240
Kepler-1625b
exomoon 413
Makemake
MK2 334
Mars
Deimos 39, 152, 171, 174-175, 180
Phobos 39, 43, 152, 171,
Neptune
Despina 308
Galatea 302, 308
Halimede 297, 308
Hippocamp 297,308-309
Laomedeia 297,308
Larissa 308-309
Naiad 308
Nereid 47,300, 303, 305, 306-307
Neso 297, 308
Proteus 300, 303, 309
Psamathe 297
Sao 297, 308
Thalassa 308
Triton 26, 47, 297, 298, 300, 304-305, 309
Pluto
Charon 336
Hydra 336
Kerberos 336
Nix 336
Saturn
Dione 252, 262
Enceladus 25, 26, 43, 245, 252 256, 260-261
Hyperion 253
lapetus 27,252, 263
Janus 249, 253
Mimas 27, 43, 252, 260, 264
Pandora 253
Phoebe 43, 245, 249, 252

$$
\begin{aligned}
& 263,265 \\
& \text { theus } 253
\end{aligned}
$$

Prometheus 253
Tethys 252,260, 262
Titan 26, 27, 43, 148, 217, 245,

$$
249,250,252,258
$$

Uranus
Ariel 273, 274, 283, 285
Belinda 283
Bianca 283
Cordelia 283, 289
Cressida 283
Cupid 273
Desdemona 283
Juliet 283
Miranda 26, 27, 273, 274, 283

Oberon 44, 273, 274, 283,
287,288
Ophelia 283, 28
Portia 283
Puck 283, 289
Rosalind 283
Titania 44, 45, 273, 274, 283, 288
Umbriel $273,274,283,286$

N

nebulae 442
California Nebula 466
Carina Nebula 475 Cat's Eye Nebula 441, 469 Crab Nebula 470
Dumbbell Nebula 473
Ghost of Jupiter 476
Helix Nebula 480
Hind's Variable Nebula 511 Horsehead Nebula 441, 483 ris Nebula 486
Little Dumbbell Nebula 489 NGC 604553
North America Nebula 492 Orion Nebula 494
Owl Nebula 495
Ring Nebula 502
Rosette Nebula 503
Solar Nebula 64
Tarantula Nebula 536,537
Veil Nebula 515
W40 517
Neptune 25, 26, 27,46-47,
290-309, 313, 326,
see also atmosphere,
magnetosphere, ring
systems,
Great Dark Spot 25, 47, 295 vortices 295
Neptune-Like exoplanets
HD 40307 g 390
HIP 68468 c 398

0

observatories, see also space
centres, telescopes
Arecibo Observatory, Puerto Rico 73,323
Berlin Observatory, Germany 298
Calar Alto Observatory, Spain

$$
369
$$

369
Cerro Tololo Observatory, Chile 308
European Southern
Observatory, Chile 369,
378, 379, 385, 391, 399,
422-423, 434-435,
437
Geneva Observatory,
Switzerland 379
Keck Observatory, Hawaii 273,
297,369, 379

Kuiper Airborne Observatory 273
Las Campanas Observatory Chile 359
La Silla Observatory, Chile 373 374, 378, 398
Lick Observatory, USA 466, 562
Mauna Kea Observatory, Hawai 131, 308, 331, 332
McDonald Observatory, USA 284, 374
Paris Observatory, France 276 Perth Observatory, Australia 273
Stratospheric Observatory for Infrared Astronomy 53
Winer Observatory, USA 401
Oort Cloud 311, 326, 339, 346 353

P

planetary storms $24,25,27,38$, 40, 42, 43, 47, 73, 90, 117, 177, 215, 222-223, 257, 295, 298, 301

Planet X 4

R
ring systems
Chariklo 317
Gliese 876c 383
Haumea 333
Jupiter 41,215, 221, 224 Neptune 27, 47, 295, 300, 302 urn 24, 27,42-43, 248, 249, 252,253,254-255
Uranus 27, 45, 271, 273, 274 280
rockets
Atlas V-401 190
Atlas V 551231
Saturn V 158

S

Saturn 24, 26, 27, 42-43, 242-265, 326, see also atmosphere, craters magnetosphere, ring systems

north pole 24
 \section*{cience-fiction}

2001: A Space Odyssey 157, 233, 250
2010: The Year We Make Contact 233
Asimov, Isaac 33, 43, 77, 94 182, 239, 259, 371
Babylon 5 370-371 Bradbury, Ray 77,94,205 Clarke, Arthur C 43, 77, 259
Cloud Atlas 41, 220
Dick, Philip K 239, 259

Doctor Who 45, 271, 299, 522
Event Horizon 47, 299
Futurama 220, 259, 299
Gattaca 259
Herbert, Frank 371
interstellar 250
41
Jupiter Ascending 41, 220
Le Voyage dans la Lune 157
Lewis, CS 77
Lovecraft, HP 77
Mars Attacks 182
Martian, The 39, 183
Martian Chronicles 205
Marvel 522
Men in Black 220
Rice Burroughs, Edgar 182 Sebald, WG 43
Star Trek 47, 209, 250, 259, 299, 522
Star Wars 43, 135, 404, 414 Sunshine 66, 77
Superman 522
Total Recall 183
Verne, Jules 156
Vincent, Harl 239
Vonnegut, Kurt 259
WALL-E 250
War of the Worlds, The 39, 182
Wells, HG 47, 182
olar eclipses 28-29,60
solar storms \& flares 59-63
solar wind $33,36,56,61,62$, $72,73,112,113,177$, 276, 485
space centres \& research facili-
ties, see also observa-
tories, telescopes
Ames Research Center, USA
309, 358, 401, 412, 432
Antarctic Halley Research
Station 137
Anderson Mesa Station, USA 318
Cape Canaveral, USA 230
Goddard Space Flight Center,
USA 35, 98-99, 207,
433, 454
Jet Propulsion Laboratory, USA
95, 118, 363, 422-423
459
Johnson Space Center, USA 156, 184
Kennedy Space Center, USA 51, 156, 158
SETI Institute, USA 309, 318, 371, 415
Sydney Institute for Astronomy Institute for Astro
in Australia 482

spacecraft \& satellites 48-53,

 see also spacetelescopes
Akatsuki 92-93
Apollo 1 50, 158-159
Apollo 8 50, 154

Apollo 1124 50, 148, 149, 154, 156, 158-159, 163
Apollo 12 165, 167
Apollo 13156
Apollo 15166
Apollo 20165
ARTEMIS 155
Atlantis 51, 52, 97
BepiColombo 33, 76
$41,43,219,239,245$
247, 249, 250, 252-253,
255, 258, 260, 262, 263,
264, 283
Challenger 51
Chandrayaan-1 155
Chang'e 1155
Chang'e 4 52,155, 164
Clementine 155
Columbia 51
Curiosity rover 181,185,
188-189, 192, 195, 204-205
Dawn 184, 316, 325, 340
Deep Impact (EPOXI) 339,

$$
345,350
$$

Deep Space 1 339, 340
Discovery 51
Earth Observing System
(EOS) 121
Endeavour 51
Europa Clipper 41, 234-235
ExoMars Trace Gas Orbiter 187
Explorer 149
Freedom 749
Friendship 750
Galileo 215, 219, 224, 233, 238, 239, 321, 348
Gemini 450
GPM Core Observatory 121
GRACE 120
GRAIL 155
Hayabusa 320
Helios A \& B 363, 397, 419
Huygens probe 249, 250
CESat-2 121
nSight lander 38-39, 171,181, 190-193, 206-207
International Space Station 39 $51,53,145,160,184$ 185,194
Juno 41, 219, 221, 226, 229, 230-231, 239
Kaguya 155
Landsat 120, 141
CROSS 155
LRO 155
Luna 1, 2 \& 3154
Lunar Orbital PlatformGateway 39, 160, 194
Lunar Orbiter 1154
unar Prospector 155
Lunar Reconnaissance Orbiter 29
Lunokhod 1155

Magellan 35,92,93,96-97,

99, 102

Mariner 195
Mariner 2 87, 93, 95
Mariner 4 171,18
Mariner 7171
Mariner 9 174,180, 198, 201
Mariner 10 75, 79
Mars 2 \& 3180
Mars Atmospheric and Volatile EvolutioN 187
Mars CubeSat One 190
Mars Express 187, 207
Mars Global Surveyor 173,

$$
\begin{gathered}
180,181 \\
\text { Odvssev } 18
\end{gathered}
$$

Mars Odyssey 181, 187, 192, 193
Mars Pathfinder 181
Mars Reconnaissance Orbiter 181, 187, 188, 193, 196
Mars Science Laboratory 188-189
MAVEN 193
Mercury Magnetospheric Orbiter 76
Mercury Planetary Orbiter 76 MESSENGER 33, 71, 75, 80, 82
Mir 53
Multi-Mission Space Explora-

$$
\begin{aligned}
& \text { ton Vehicle } 185 \\
& \text {-Shoemaker } 320
\end{aligned}
$$

New Horizons 71, 109, 219

$$
\text { 239, } 273
$$

Opportunity, Mars Exploration Rover 155, 181, 187-188
Orion Multi-Purpose Crew Vehicle 39, 194
OSIRIS-REX 314-315
Parker Solar Probe 57
Philae 342
Phoenix 181
Pioneer 10 219, 239, 250,

$$
297,457
$$

Pioneer 11 219, 245, 249
Pioneer Venus 99, 102,104
Psyche 324
Ranger 7154
Ranger 9154
Salyut 153
Skylab 53,145
SMAP 121
SMART-1 155
SORCE 120
SpaceShip Two VSS Unity 52
Spirit, Mars Exploration Rover

181,187, 188

Sputnik 1 49, 158
Sputnik 2 49,109 339
Stardust-NEXT 339, 350, 352
Surveyor 1154
Surveyor 1
SWOT 121
TEMPO 121
Trace Gas Orbiter 193

Transiting Exoplanet Survey Satellite 35, 99, 359 420
Ulysses 219, 348
Vega 92
Venera series 92, 93
Venera 392
Venera 15 35, 101, 103
Venera 16 101, 103
Venus Express 93,103
Viking 1180
Viking 2 171, 209
Voskhod 250
Vostok 1 49, 154
Voyager 1 41, 43, 215, 219, 224 239, 245, 247, 249, 250 264, 271, 353
Voyager 2 25, 45, 47, 215, 219, 239, 245, 249, 250,
255, 264, 269, 271, 273, 275, 283, 286, 287, 288 293, 295, 297, 298, 300 303, 304, 305, 306, 308-309, 348

space telescopes, see also

 spacecraft \& satellitesChandra X-ray Observatory 395, 448, 459, 523, 534
564, 568, 573, 581, 582
CoRoT 359, 367
Hubble 47, 236, 239, 250, 271, 273, 275, 276, 283, 295 297, 298, 309, 336, 348 359, 372, 383, 388, 396 397, 401, 413, 418, 419 427, 431, 432-433, 437 448, 497, 502, 520, 523, 524, 526, 527, 538, 540, 567, 578
James Webb 35, 99, 359, 377, 389, 401, 433
Kepler 279, 358, 389, 402-415 409, 410-411, 427, 428, 510
Nuclear Spectroscopic Tel-
Spitzer $249,359,363,371,386$ 389, 392, 401, 402, 426 $427,431,474,510$
Wide-Field Infrared Survey Telescope 359
XMM Newton Observatory 395, 448

spectra 453

star clusters \& systems 445, see also asterisms,
constellations, galaxies
55 Cancri 362-363
Algol 458
Alpha Centauri 58, 459, 460
Capella 468
GRS 1915+105 477
Lich system 357, 416-417
Messier 54548
MY Camelopardalis 441, 491
NGC 2244503

Omega Centauri 493 Pleiades 441,466, 496
Polaris 497
Regulus
Rigel 441, 472, 501
Rigel 441, 472, 509
Spica 509
Trumpler 16475
Trumpler 16475
stars
1E 2259+586 454
2005cs 557
2011fe 547
3C 273455
55 Cancri A 362-363
55 Cancri B 362-363
Achernar 456
Aldebaran 457
Alpha Centauri A and B 58,
423, 459, 460
Alpha Centauri C 459
Alnitak 483
Altair 461
Antares 462
Arcturus 463
Barnard's Star 364-365, 464
Betelgeuse 441, 465
binary stars 445
black dwarfs 447 brown dwarfs 376-377, 443
Canopus 467
Capella Aa and Ab 468
Capella H and L 468
Castor 421
Copernicus 363
CVSO 30369
Deneb 472
Epsilon Aurigae 441, 474 Epsilon Eridani 357, 370-371
Eta Carinae 475
Fomalhaut 372
Gliese 163373
Gliese 176374
Gliese 436375
Gliese 581378
Gliese 625380
Gliese 667 C 381
Gliese 832382
Gliese 876383
GO Lupi b 385
HAT-P-11 388-389
HD 189777395
HD 209458397
HD 40307390
HD 69830 357,391
HE 1256-2738 441, 478
HE 2359-2844 441, 479
heavy metal subdwarfs 443
Herschel's Garnet Star 481

Kepler-186 410-411
Kepler-444 412
Kepler-62 406
Kepler-70 357, 407
Kepler-90 409
Kepler's Supernova 441, 487
Kes 75488
magnetars 446
Mira 490
Mira B 490
MY Camelopardalis 491
neutron stars 446
orange dwarfs 443
Pi Mensae 420
Pi Mensae b 420
Pollux 421
Procyon 498
Procyon B 498
protostars 442
Proxima Centauri 58, 422-423, 460
PSR B1257+12 416, 417
PSR B1620-26 419
pulsars 446-447
quasars 447
RCW 86499
red dwarfs 443
red giants 65,109,444
red supergiants 48
SAO 158687273
SAO 206462505
SGR 1806-20 507
SIMP0136 377
Sirius A \& B 467,508
SN 1994ae 545
SN 1994557
SN 2011dh 557
SN 2018ivc 541
Sun 55-67
supergiants 444
supernova 1987A 538
supernova 1993J 527 supernova 1993J 521 supernovas 447 Tabby's Star 441,510 TRAPPIST-1 426-427
TReS-2A 428
T Tauri 511
TYC 9486-927-1 360
ULAS J1120+0641 512
UY Scuti 441, 513
Vega 514
VY Canis Majoris 58,516
WASP-12 430-431
white dwarfs 65, 447 White dwarts 1061 434-435
Xi Persei 466
yellow dwarfs 443 YZ Ceti 437
Sun 28-29, 36, 55-67, 108, 109, 113, 161
Super-Earths
55 Cancri e (Janssen) 363 Barnard's Star b 364-365, 464 CoRoT-7b 366-367

Gliese 176 b 374
Gliese 581 c 378-379
Gliese 625 b 380
Gliese 876 d 383
HD 40307 g 390
HIP 68468 b 398
Kepler-22b 405
Kepler-78b 408
Pi Mensae c 420
Proximab 422-423
PSR B1257+12c (Poltergeist) 417
PSR B1257+12d (Phobetor) 417 Ross 128 b 425 Wolf 1061 d 435

T

telescopes (ground) see also observatories, space centres \& research facilities, spac telescopes
Anglo-Australian Telescope Australia 420
Arecibo Radio Telescope, Chile 104
Atacama Large Millimeter/ sub-Millimeter Array, Chile 129
Blanco, Chile 308
Canada-France-Hawaii telescope, Hawaii 539
Event Horizon Telescope 542-543, 585
Galileo National Telescope, Canary Islands 359
Hobby-Eberly, McDonald Observatory, USA 374
International Scientific Optical Network, Russia 346
Kilodegree Extremely Little Tel
escope, USA 401, 415
Pan-STARRS, Hawaii 424
Suburu, Mount Kea, Hawaii 331
Transiting Planets and Planetesimals Small Telescope, Chile 426
Very Large Telescope, Chile 368-369, 385, 456
Warsaw Telescope, Las Campanas Observatory, Chile 359
transits 29, 75, 92, 249, 392, 403, 413, 414

U

Ultraluminous X-ray Sources (ULXs) 564
Uranus $25,26,27,44-45,88$, 266-289, 326, see also atmosphere, canyons \& channels, ring systems
dark spot 275

V
Venus 24, 26, 29, 32, 34-35, 65, 76, 84-105, 304 , see also atmosphere, anyons \& channels raters, magneto phere, volcanoes mountains
Alpha Regio 100, 103
Aphrodite Terra 100, 105

Ishtar Terra 105

volcanoes \& mountains
Aeolis Mons, Mars 205
Alps, Earth 117
Altiplano-Puna volcanic com-

$$
\begin{aligned}
& \text { plex, Earth } 129 \\
& \text { s.Earth } 117.128
\end{aligned}
$$

Andes, Earth 117, 128
Appalachian Mountains, Earth 115
Beta Regio, Venus 103
Caloris Montes, Mercury 78, 79, 83
Chilean Coast Range, Earth 128
Eifuku, Earth 127
Elysium Planitia, Mars 195,

$$
\begin{gathered}
206-207 \\
\hline
\end{gathered}
$$

Everest, Earth 26, 37, 115, 122, 124-125, 127 ,
Grapevine Mountains, Earth 135
Himalayas, Earth 117
K2, Earth 124
Kilauea, Earth 26
Kilimanjaro, Earth 117
Maat Mons, Venus 26, 100, 102 Mauna Kea, Earth 115,122, 130-131
Mauna Loa, Earth 131
Maxwell Montes, Venus 35, 89, 100, 103, 104, 105
Mid-Ocean Ridge, Earth 37, 115
Mons Hadley, Moon (Earth) 166
Mons Huygens, Moon (Earth) 166
Montes Apenninus, Moon (Earth) 162, 166
oolmalasin, Earth 143
Olympus Mons, Mars 24, 26, 173, 179, 195, 200
Rockies, Earth 117
Rwenzori Mountains, Earth 157
Tharsis Montes, Mars 195 198, 199
Ural Mountains, Earth 115

W

water-ice, see also liquid oceans 33, 73, 75, 151, 155, 18 187, 207, 226, 262, 316

Acknowledgments

All images © as credited on the page.
Many of the images in this book were obtained courtesy of NASA; find out more at www.nasa.gov.

ESA images used under a CC BY-SA 3.0 IGO licence.

Creative Commons images used under the license terms as follows:

For all images listed as CC BY 3.0 see full licence terms at: https://creativecommons. org/licenses/by/3.0/legalcode

For all images listed as CC BY 4.0 see full licence terms at: https://creativecommons org/licenses/by/4.0/legalcode

For all images listed as CC BY-SA 3.0 see full licence terms at: https://creativecommons org/licenses/by-sa/3.0/legalcode

For all images listed as CC BY-NC 2.0 see full license terms at: https://creativecom-mons.org/licenses/by-nc/2.0/uk/legalcode

For all image listed as CC BY-SA IGO 3.0 see full license terms at: https://crea-tivecommons.org/licenses/by-sa/3.0/igo/ legalcode

For all images listed as CC BY 2.0 see full license terms at: https://creativecommons org/licenses/by/2.0/uk/legalcode For all images listed as CC BY-SA 4.0 see full license terms at: https://creativecommons. org/licenses/by-sa/4.0/legalcode

For all images listed as CCO 1.0 see full license terms at: https://creativecommons. org/publicdomain/zero/1.0/legalcode

Author Biographies

Oliver Berry
Oliver Berry is a writer, photographer and filmmaker, specialising in travel, nature and the great outdoors. He has travelled to sixty-nine countries and five continents, and his work has been published by some of the world's leading media organisations, including Lonely Planet, the BBC Immediate Media, John Brown Media, The Guardian and The Telegraph.

Dr Mark A. Garlick

Dr. Mark A. Garlick completed his PhD on binary stars in 1993, at the UK's Mullard Space Science Laboratory. After three further years of research at Sussex University he changed careers, and is now a freelance writer, illustrator and computer animator, specializing in astronomy.

Mark Mackenzie

London-based editor and writer Mark Mackenzie also edited the 2019 Lonely Planet anthology Curiosities and Splendour: An Anthology of Classic Travel Literature.

Valerie Stimac

Valerie Stimac is an Oakland-based travel writer and astronomy enthusiast. She founded the online Space Tourism Guide and authored Lonely Planet's Dark Skies: A Practical Guide to Astrotourism.

